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Abstract 

Error-Correcting Output Codes (ECOC) is a machine learning algorithm 

that converts multi-class classification problems into multiple binary 

classification problems through a codeword matrix. One assumption behind 

ECOC is solving these binary classification problems with a classifier of the same 

type forming a homogenous classifier composition. With this work we propose a 

Heterogeneous ECOC approach that relaxes this property of ECOC. This 

approach allows solving the same binary classification problems with any one of 

the classifiers in the pool of binary classifiers forming a heterogeneous classifier 

composition. While this change may appear intuitive, it also brings complications 

with it. 

For instance, this scheme change prompts an optimization problem where 

the algorithm needs to find the classifier composition with the highest 

performance. In connection, another complication is distinguishing classifier 

compositions from each other. To determine the best metric to judge the 

performance of classifier compositions, we used knowledge from the binary class 

values of predicted training instances such as the pairwise distance among these 

instance columns and/or rows as well as accuracies of predicted binary class 

values of validation instances. Using this knowledge we ran our experiments to 

compare the four different units of fitness: column distance, row distance, column 

× row distance, validation accuracy. For this purpose we initially used exhaustive 

search but then favored genetic algorithm search instead. 

We used traditional (homogenous) ECOC as a benchmark to compare 

with the Heterogeneous ECOC approach. Through 10-fold cross validation, our 

experiments shown that while the three distance based approaches had mediocre 

performance – often being inferior to traditional ECOC, validation accuracy 

based unit of fitness outperformed both rivaling units of fitness and traditional 

ECOC. 

Keywords: Classification, Data Mining, Error-Correcting Output Codes, 

Genetic Algorithm, Machine Learning 
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1 Introduction 

With this work we investigate relaxing one of the assumptions of the machine 

learning algorithm Error-Correcting Output Codes (ECOC) (Diettrich & Bakiri, 1995) for 

multi-class classification problems where the algorithm assumes a homogeneous composition 

of its binary classifiers. We investigate the validity of this approach and also address the 

optimization problem this approach introduces where we need to find the heterogeneous 

composition of binary classifiers with the best performance. 

We have broken our research into five chapters. In this chapter we briefly introduce 

our research topic and an overview of our approach. In chapter two we introduce a pool of 

well-known classifiers we use for our binary classification problems and we also discuss 

well-known methods to convert multi-class problems into binary problems. In chapter three 

we introduce the Heterogeneous ECOC approach and also discuss our approaches towards 

solving the aforementioned optimization problem. In chapter four we present our experiments 

where we discuss and compare the performance of the individual units of fitness as well as 

how it compares with Homogenous ECOC. In chapter five we discuss our findings and also 

discuss further research possibilities. 

1.1 What is Machine Learning? 

Since the first operation of ENIAC (Electronic Numerical Integrator And Computer), 

the first fully electronic computer in 1946, nearly seven decades ago, computing has greatly 

benefited in breakthroughs in engineering as well as other physical sciences. For instance 

with breakthroughs such as transistors, integrated circuits, microprocessors, parallel 

computing, supercomputers, etc. computing capabilities has seen a very drastic increase in 
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capability. With possible future breakthroughs such as DNA or quantum computing further 

exponential increase in computing capabilities in the near future is anticipated (Cory, Fahmy, 

& Havel, 1997). 

Computer science has also made and is still making its own breakthroughs in a variety 

of fields utilizing this ever more powerful tool. Branch of Artificial Intelligence (AI), 

Machine Learning is one of these fields which is the scientific the study that investigates 

systems capable of learning from data rather than being programmed with explicit 

instructions. In the past six decades the brief history of Machine Learning has seen a number 

of noteworthy milestones. 

One such milestone was the first learning program in 1952 by Arthur Lee Samuel that 

became better at playing the game checkers by learning winning strategies in a supervised 

learning mode against human players as well as against itself. Perceptron (Rosenblatt, 1957) 

was another milestone that built upon the prior research on Neural Networks connecting a 

mesh of nodes where simple decisions are made in each resulting in a complex decision when 

put together. 1967 saw the first programs capable of pattern recognition using algorithms 

such as nearest neighbor. Explanation Based Learning (EBL) capable of analyzing training 

data and discarding irrelevant information was introduced by Gerald Dejong in 1981. 

In 1990s Machine Learning saw a wide variety of applications in a variety of areas 

such as data mining, text learning, and language learning, naming a few. 2000s and onward 

is seeing an explosive growth in applications of Machine Learning which no longer is a 

curious research topic among computer scientists with its vast practical real-world uses in 

research, engineering, commerce,  forensics, and practically anything imaginable involving 

data. One of the practical uses of Machine Learning is classification tasks through supervised 

learning where a dataset with labels is used for training. 
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1.2 Classification Problem 

In this work we investigate binary classification and multi-class classification 

methods. Binary classification problems involve classifying elements of a given set into two 

groups. Multi-class classification problems involve classifying elements of a given set into 

groups of three or higher. 

One of the challenges of multi-class classification is that most powerful classifiers – 

even those usable or extendable for multi-class classification – are typically optimized for 

binary classification (Valiant, 1984). This strongly suggests that it would be beneficial to 

develop methods to convert multi-class classification problems into binary classification 

problems (Natarajan, 1991). There are a number of methods that is commonly used to convert 

multi-class classification problems into multiple binary classification problems such as One-

Vs.-All (Rifkin & Klautau, 2004), One-Vs.-One (Allwein, Schapire, & Singer, 2001), and 

Error-Correction Output Codes (ECOC) (Diettrich & Bakiri, 1995). 

Our focus on this work will be on ECOC which offers a robust “classification by 

consensus” approach significantly reducing the effects of noise in the data - unlike 

approaches such as One-Vs.-All or One-Vs.-One. ECOC uses codwords to achieve this where 

each of these codewords refer to a class from the multi-class classification problem. When 

combined, rows of these codewords form a binary matrix where each column forms a binary 

classification problem. Ideally, the design of the binary matrix should have high column 

separation and row separation which measured in terms of column and row Hamming 

distance. This reduces the effects of overfitting as well as correlation of errors. This high 

Hamming distance should also be non-complimentary to each other as some binary classifiers 

treat a class and its compliment symmetrically. With exhaustive settings, for a k-class multi-
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class classification problem ECOC creates � = 2(���) − 1  binary classification problems. 

One of the assumptions behind ECOC is that all of the mentioned b binary classification 

problems must be solved by the same binary classifier in a homogeneous manner which we 

will henceforth refer to as Homogeneous ECOC. 

With this work we research if it is sound to relax this homogenous assumption where 

we would introduce diversity among the binary classifiers selected from a pool of classifiers 

solving the binary classification problems in a heterogeneous manner which we will 

henceforth refer to as Heterogeneous ECOC. With this diversity however Heterogeneous 

ECOC approach creates an optimization problem to find a composition of binary classifiers 

with the highest performance. In an attempt to find a metric to distinguish binary classifier 

compositions among each other, we compared the performance of four different approaches: 

column distance (instance column separation), row distance (instance row separation), 

column × row distance (instance column × row separation), and validation accuracy. We also 

compared the performance of Heterogeneous ECOC with the performance of Homogeneous 

ECOC which we treat as a benchmark. We verify the statistical relevance of our results 

through 10-fold cross validation. We also perform a second 10-fold cross validation for the 

candidates from each fold to determine the composition with the highest validation accuracy. 

We discuss well-known classification problems and methods in the next chapter 

serving as a precursor to the Heterogeneous ECOC approach. We first briefly introduce our 

pool of binary classifiers we use with our approach and then discuss well-known comparable 

multi-class to binary class conversion methods (One Versus All, One Versus One, ECOC). 
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2 Classification Problems and Methods 

In Machine Learning supervised and unsupervised learning are the most important 

tasks. Unlike in unsupervised learning, in supervised learning we are provided with labels of 

classes. If these labels are real numbers, then the task for the learning algorithm is a 

regression problem; however if the labels are discrete values then the task becomes a 

classification problem. In classification we are going to discuss two types of tasks – namely 

binary classification which has two classes and multi-class classification which has more than 

two classes. 

Many tasks in the real world can be thought of as complex data sets creating multi-

class classification problems. This creates an immense number of applications for Artificial 

Intelligence (AI) such as biometric recognition, medical diagnostics, weather prediction, 

OCR, natural language processing, etc. where machine learning algorithms with a training set 

can be trained to make predictions on future data (test set) using statistical principles.  

While some machine learning algorithms such as C4.5 and SVM can be extended to 

handle multi-class classification directly (Kong & Dietterich, 1995), it is often beneficial and 

easier to devise the problem as a binary (two-class) classification problem (Allwein, Schapire, 

& Singer, 2001). After all, many machine learning algorithms including the most advanced 

ones are designed and optimized for binary class classification tasks. Therefore there is a 

certain need (Kong & Dietterich, 1995) for the reduction of multi-class classification 

problems into a series of binary classification tasks. Even though this brings some 

computational cost, it significantly improves the accuracy of predictions (Diettrich & Bakiri, 

1995). Furthermore, binary classification has a greater variety of techniques in comparison to 

multi-class classification. (Flach, 2012) Hence, we can exploit and employ these techniques 
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in their original forms. One of these techniques is Error-Correcting Output Codes (ECOC) 

which we investigate improving with this work. 

2.1 Classifier Pool 

Once we reduce the multi-class classification problem down to multiple binary 

classification problems, various machine learning techniques become useable. Our approach 

(discussed in the next chapter) utilizes a pool of classifiers to solve these multiple binary 

classification problems. 

A larger pool of classifiers is beneficial as it offers a greater number of possible 

solutions for the multiple binary classification problems. It is however important to note that 

the search space to find the optimal combination of these algorithms for the individual binary 

classification problems also increases with a double exponential manner which has an impact 

on performance (See Figure 11). While we used the binary classifiers ANNs, SVMs, and 

Logistic Regression and binary/multi-class classifiers Naïve Bayes and Decision Trees, any 

combination of any two or more classifiers for supervised learning can be used in their place. 

We briefly discuss these classifiers below. 

2.1.1 Artificial Neural Networks 

Artificial Neural Networks (ANN) (McCulloch & Pitts, 1943) is a binary classifier 

that uses inter-connected nodes (input nodes, hidden nodes and output nodes) called neurons 

which mimic biological neural networks. The data travels from the input neuron through one 

or more inter-connected hidden neurons ending up in an output neuron (See Figure 1). With 

methods such as defining a cost function, ANN can be trained to find a more optimal solution 
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to problems it is able to solve. It can be further refined if the cost function is modeled on the 

observations on the data. 

We used a very simple feed forward ANN implementation with a hidden layer size of 

20 and each run only had 25 iterations/epochs in an attempt to save time. This is much lower 

than the default of 1000 iterations. We believe this is the main reason as to why ANN has 

significantly underperformed. This however had an unintentional consequence that has 

provided most interesting results (Chapter 5.2). 

 
Figure 1: Inter-connected nodes (input, hidden, output) of ANN 

In 1943, three years before the first operation of ENIAC, Warren McCulloch and 

Walter Pitts introduced a new computational model which has come to be known as ANN. 

ANN has seen improvements since such as Perceptron (Rosenblatt, 1957), Parallel 

Distributed Processing (PDP) (Rumelhart & MacClelland, 1988), Recurrent Neural Network 

(RNN) (Williams & Zipser, 1989), Deep Neural Networks (DNN) (Larochelle, Bengio, 

Louradour, & Lamblin, 2009) to name a few. While the popularity of ANN as a tool for 

input 
nodes 

hidden nodes 

output 
nodes 
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machine learning diminished with the availability of much simpler methods in 1990s, it 

regained some of the popularity it lost with more recent improvements. 

2.1.2 Support Vector Machines 

Support Vector Machines (SVM) (Cortes & Vapnik, 1995) is a non-probabilistic 

binary classifier. SVM is a linear generalization of Generalized Portrait Algorithm (Vapnik & 

Lerner, 1963) double check. SVM separates two groups’ elements in a data by building 

hyperplane(s) in high or infinite dimensional space. This can offer a good separation of data 

elements  (Vapnik, 1998) if the hyperplane provides a large distance to the nearest training 

element of any class. 

Several extensions to SVM exist such as Support Vector Regression (SVR) (Drucker, 

Burges, Kaufman, Smola, & Vapnik, 1997), Multiclass Support Vector Machines (Weston & 

Watkins, 1998), Transductive Support Vector Machines (Gammerman, Vovk, & Vapnik, 

1998) and Structured Support Vector Machines (Finley & Joachims, 2008). 

2.1.3 Logistic Regression 

Logistic Regression or Logit Regression (Bishop, 2006) is a binary classifier that uses 

probability to predict the values of dependent variables using the relationship between 

dependent and independent variables. Unlike linear regression that estimates numeric values, 

logistic regression estimates probabilities. Logistic regression calculates a threshold by 

weighting and treating the features. Logistic Regression then determines the class probability 

by using the distance from this threshold of each new instance in a sigmoid function where 

the said probability increases with the distance from the threshold. 
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Typically in logistic regression implementations where an exact binary classification 

is required, classifier is given a second threshold where a particular instance is classified as 

belonging to a class if its probability is higher than this threshold and if not it is classified as 

belonging to the other class. In our implementation we use the threshold of .5 and any 

instance with less probability is classified as belonging to the other class. 

Several extensions to Logistic Regression also exist such as, Mixed Logit (Revelt & 

Train, 1998) Multinomial Logistic Regression (Multinomial Logit) (Hedeker, 2003), Ordered 

Logistic Regression (Ordered Logit) (Hilbe, 2009). 

2.1.4 Naïve Bayes 

Naïve Bayes (Ng & Jordan, 2002) also known as an independent feature model is a 

probabilistic binary and multi-class classifier that makes strong assumptions that the presence 

or absence of any feature does not have any correlation with the presence or absence of any 

other feature. In a binary class and multi-class setting for each instance Naïve Bayes returns 

one probability value for each class based on the features and prefers the more probable 

candidate as the class.  

Despite its simple seemingly counterintuitive and even unrealistic assumption, Naïve 

Bayes is remarkably successful with results comparable (Rish, 2001) to more sophisticated 

methods. A significant benefit over other more complex classifiers is that Naïve Bayes is not 

very complex computationally however as a result a key disadvantage of Naïve Bayes is that 

its use is limited to more simplified models. 
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2.1.5 Decision Trees 

Decision Trees existed prior to their first use in computing but were hand drawn. 

Computing saw the implementation of decision trees in the form of ID3 (Quinlan J. R., 1986), 

C4.5 (Quinlan J. R., 1993), C5.0 (Kuhn & Johnson, 2013). Despite their simple structure, 

decision trees are a robust method commonly used in machine learning (Rokach, 2010) as a 

binary or as a multi-class classifier. 

 
Figure 2: A sample decision tree 

Decision trees have a design that resembles the structure of trees. The tree starts at a 

root node which branches to either more branches which serve as internal or test nodes or to 

leaves which serve as terminus or decision nodes. Figure 2 has sample decision tree diagram 

where circles represent internal nodes and diamond shapes represent terminus nodes. 

Notable decision tree implementations include Iterative Dichotomiser 3 (ID3), C4.5, 

C5.0, Classification and Regression Tree (CART), CHi-squared Automatic Interaction 

Detector (CHAID), Multivariate Adaptive Regression Splines (MARS). Decision Tree 

algorithms typically build the tree in a top-down recursive manner where during construction 

or during search iterations correspond to the individual nodes – be internal or terminus. 
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2.2 Multi-Class to Binary-Class Conversion Methods 

Multiple techniques exist to convert multi-class classification problems into multiple 

binary classification problems such as One Versus All (Rifkin & Klautau, 2004), One Versus 

One (Allwein, Schapire, & Singer, 2001), and our main focus: Error-Correcting Output 

Codes (ECOC) (Diettrich & Bakiri, 1995). 

2.2.1 One Versus All 

One Versus All (Rifkin & Klautau, 2004) also known as One Versus Rest 

progressively separates each of the k-classes into k-binary classifiers such that during training 

all instances referring to every class ��

 is treated as a negative example for class ��. Every 

new instance will be classified based on the class with highest confidence. While simplistic, 

One Versus All preforms on par with more complicated methods. 

One significant assumption of One Versus All is that the prediction scores determined 

by the binary classifiers are comparable which leads the One Versus All classifier to assign 

the query instance with the class that corresponds to the largest prediction score. However, 

this is not often the case, in particular when the class distribution is far from being uniform. 

The other downside of this type of classifier is its disregard of class inter-relationships, such 

as hierarchical relationships (Melvin, Ie, Weston, Noble, & Leslie, 2007). 

2.2.2 One Versus One 

One Versus One (Allwein, Schapire, & Singer, 2001) also known as pairwise 

classification or round robin classification progressively separates each of the k-classes into 

k-binary classifiers such that during training every class �� is only paired once with each class 

�� where class �� is treated as a positive example and class �� as a negative example while 
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ignoring every class ���

 . Similar to One-Vs.-All method every new instance will be classified 

based on the class with highest confidence. One-Vs.-One is an increasingly more popular 

technique for efficiently converting multi-class problems into binary problems performing 

significantly better (Fürnkranz, 2002) than One-Vs-All.  

2.2.3 Error-Correcting Output Codes (ECOC) 

Error-Correcting Output Codes (ECOC) (Diettrich & Bakiri, 1995) offers a robust 

“classification by consensus” approach significantly reducing the effects of noise in the data - 

unlike approaches such as One-Vs.-All or One-Vs.-One. (Berger, 1999) ECOC achieves this 

by creating rows of codewords to correspond to each class forming a binary matrix in such a 

manner that each codeword is well separated in Hamming distance making them distinct 

from each other. Furthermore each column of bit position function ��  should not correlate 

with the neighboring columns and this can also be achieved through high Hamming distances 

among the columns. In exhaustive settings, for a k-class multi-class classification problem 

� = 2(���) − 1 columns are created which corresponds to the maximum number of non-

complimentary combinations of the bit position functions forming b columns of ECOC 

codewords. The exponential nature of the number of binary classification problems makes 

ECOC computationally very expensive for higher class problems (See Figure 3).  

 
Figure 3: Number of binary classification problems per number of multi-class classes 
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The purpose for this rather complicated setup is to avoid similar or even correlated 

errors as each of these columns is actually a binary classification problem. After all, ECOC 

will only succeed in correcting errors if the error itself isn’t consistent on the majority of the 

bit positions of the codeword matrix. Furthermore the errors will highly correlate if the 

columns have complimentary rows. This is because not only would the same errors be 

repeated on the complementary rows but also most learning algorithms will treat a class and 

its compliment symmetrically which can result in worse than random performance as the 

algorithm will construct the same search environment for both binary values interchangeably. 

(Kowalczyk & Chapelle, 2005) This is why column separation is used to try to minimize 

similarity and complementariness among the columns. (Diettrich & Bakiri, 1995) 

Multi- 
class 

Codeword (each row) 

�� �� �� �� �� �� �� �� 
1 0 1 0 0 1 0 1 1 
2 0 0 1 0 1 1 0 1 
3 0 0 0 1 1 1 1 0 

Figure 4: All possible columns for 3 class codewords 

However it is very difficult to meet both of these goals as there only are 2� = 8 

possible combinations for a 3 class problem (See Figure 4). As perhaps immediately 

observable, the right half and the left half of the columns are a compliment of each other so 

removing four columns we are left with only four columns of which one is either a vector of 

all zeros or ones making it useless for discrimination among rows leaving us with only 3 

columns to work with (See Figure 5). (Diettrich & Bakiri, 1995) 

Multi- 
class 

Codeword (each row) 

�� �� �� 
1 1 1 1 
2 0 0 1 
3 0 1 0 

Figure 5: ECOC code matrix for a 3-class multi-classification problem 



 

- 14 - 

 

Unlike One-Vs.-All or One-Vs.-One which directly predicts the class of new 

instances, ECOC predicts a codeword for every new instance application of then binary 

classifiers. If an exact match to the codeword is not found, the codeword with the closest 

Hamming distance will be chosen. This is the key component of ECOC that facilitates the 

error correction. Once a codeword is decided, it will then be decoded to a multi-class value 

from the original multi-class classification problem. 

For instance, consider the ECOC codeword matrix generated for a 4-class 

classification problem (See Figure 6). The codeword  1 0 0 0 1 1 1 would have 

the closest Hamming distance to 0 0 0 0 1 1 1 which would be decoded to class 2. 

This would hence correct the error by the first binary classifier.  

Multi- 
class 

Codeword (each row) 

�� �� �� �� �� �� �� 
1 1 1 1 1 1 1 1 
2 0 0 0 0 1 1 1 
3 0 0 1 1 0 0 1 
4 0 1 0 1 0 1 0 

Figure 6: ECOC codeword matrix for a 4-class multi-classification problem 

ECOC however does not take advantage of the knowledge from the individual 

instances from the actual data into account when constructing the codeword matrix with its 

predetermined make-up. Furthermore, even if the ideal conditions discussed above regarding 

column and row separation are reached, ECOC requires that the all of the binary 

classification problems are to be solved by the same binary classifier in a homogenous 

manner which may result in correlated errors. This is particularly problematic because ECOC 

can only recover from errors if and only if the errors themselves are not correlated and the 

homogeneous selection of classifiers can lead to correlated errors – particularly errors due to 

overfitting the training data. 
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2.3 Conclusion 

Intuitively, relaxing homogenous classifier composition assumption of ECOC may 

appear sound; however such a modification introduces new complications. In the next chapter 

we investigate these complications and the feasibility of a Heterogeneous ECOC approach 

where individual binary classification problems can be solved by different binary classifiers 

selected from a pool of classifiers. Heterogeneous ECOC approach however creates an 

optimization problem where the algorithm now needs to decide on which classifier 

composition to use to solve the individual binary classification problems. This however 

generates another problem where we need to be able to distinguish the performance of 

classifier compositions for which we investigate four different approaches: column distance 

(instance column separation), row distance (instance row separation), column × row distance 

(instance column × row separation), and validation accuracy. We investigate the feasibility of 

exhaustive search and genetic algorithm search with using these four approaches. In order to 

avoid the problems discussed for Homogeneous ECOC, we discuss our use of 10-fold cross 

validation to verify the classifier composition found by the search approach in a statistically 

relevant manner. However this statistical approach we use particularly to avoid overfitting the 

dataset creates yet another problem where each fold can return one or more different 

compositions for which we discuss distinguishing by testing each candidate from each fold 

through a second 10-fold cross validation to find the optimal composition. 
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3 Heterogeneous ECOC 

As discussed thus far, one of the assumptions behind the approach for ECOC is that 

all of the b binary classification problems (columns of the codeword matrix) are assumed to 

be solved homogeneously by classifiers of the same type (Kong & Dietterich, 1995). 

It may appear logical to relax this homogeneous assumption however such a 

modification to ECOC generates new problems. In this work we investigate the feasibility 

and effects of the Heterogeneous ECOC approach where instead of having a one-fits-all 

classifier, we explore using a pool of c classifiers to solve the b binary classification problems 

heterogeneously such that every column of the codeword matrix can have any one of the c 

classifiers from the said pool of classifiers. As it may be evident, this heterogeneous 

treatment of ECOC creates an optimization problem where the algorithm needs to decide on a 

classifier composition more fit in solving the individual binary classification problems 

converted from the multi-class classification problem. This suggests the algorithm needs to 

be able to distinguish the fitness of classifier compositions from each other. 

3.1 Units of Fitness 

In the Heterogeneous ECOC approach, while we perform machine learning through 

the same codeword matrix from Homogeneous ECOC, the codeword matrix does not utilize 

knowledge from the data. Hence, the codeword matrix even with its column and/or row 

separation calculations does not make it possible for us to distinguish classifier compositions 

from each other. This prompted us to investigate four units of fitness that offered the ability to 

distinguish the classifier compositions. We have compensated for this shortcoming by 

utilizing knowledge from the training and validation instances. 
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3.1.1 Column Distance 

Homogeneous ECOC relies on column separation of the codeword matrix to have 

more distinct binary classification problems for the classifiers. The rationale behind this is to 

minimize correlation of the solutions to the individual binary classification problems as if two 

binary classification problems have similar or identical solutions this will also mean any 

errors will also be correlated. ECOC can only correct errors if the errors themselves aren’t 

correlated. 

We utilized a similar column separation to distinguish Heterogeneous ECOC 

classifier compositions where we calculate the Hamming distance between the columns 

formed by the predicted solutions to the binary classification problems. We will henceforth 

refer to this as column distance. The key difference of our approach from the column 

separation of the fixed codeword matrix of Homogeneous ECOC is that we utilize the 

knowledge from the training set. 

3.1.2 Row Distance 

Homogeneous ECOC also relies on row separation of codeword matrix to have more 

distinct codewords. The purpose of having well separated codewords may be more 

straightforward as the more distinct each codeword gets, the more distinct each class of the 

multi-class classification becomes. ECOC will classify new instances by transforming the 

predicted codeword to the class codeword from the codeword matrix with the smallest 

Hamming distance. However if the Hamming distances among the classes are small, it is 

possible for even the smallest errors to be non-recoverable. 

We utilize a similar row separation to distinguish Heterogeneous ECOC classifier 

compositions where we calculate the Hamming distance between each row of class �� and all 
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rows belonging to every other class formed by the predicted solutions to the binary 

classification problems. We will henceforth refer to this as row distance. The key difference 

of our approach is that similar to column distance we utilize knowledge from the training set 

unlike the fixed codeword matrix of Homogeneous ECOC. 

3.1.3 Column × Row Distance 

Homogenous ECOC tries to maximize both column separation and row separation at 

the same time however it is difficult to satisfy both of these properties unless there are at least 

five classes (Diettrich & Bakiri, 1995). 

Similarly, to distinguish Heterogeneous ECOC classifier compositions we attempted 

to maximize both column distance and row distance discussed in the previous two sections. 

We observed that the value of column distance and row distance do not necessarily scale well 

with each other so we compensated this by multiplying the two values in an attempt to have a 

unit of fitness that maximizes both. As with what is discussed in the previous two sections we 

utilize knowledge from the training set instead of the fixed codeword matrix of Homogenous 

ECOC. 

3.1.4 Validation Accuracy 

Homogenous ECOC relies on accuracy to decide which classifier to use 

homogenously where the classifier with the highest accuracy is selected. This approach 

however has a chance of overfitting the training data and statistical methods such as k-fold 

cross validation is used to circumvent this problem. 

We decided to also use accuracy as our unit of fitness to distinguish Heterogeneous 

ECOC classifier compositions. However we recognize the same overfitting problem that 
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would arise from the use of training accuracy as the unit of fitness and we hence used 

validation accuracy instead. Using the training set, we first train using a certain classifier 

composition. Then, we use the same classifier composition to predict classes of the 

validation/test set. We then compare this prediction with the actual class values to see what 

percent of the test set classes we managed to predict correctly. While it may not appear to be 

straightforward, with this approach we also utilize the knowledge from the training set but 

also from the test set. One setback of this approach is that the processing of all that is 

mentioned takes significantly more time than other three approaches. 

3.1.5 Knowledge from Predicted Training Instances 

Thus far we have discussed our treatment of predicted training and validation 

instances to acquire knowledge to distinguish the Heterogeneous ECOC classifier 

compositions from each other where we have introduced four units of fitness to this end in 

the prior four sections. We consider first three units of fitness distance based and the last unit 

of fitness (validation accuracy) non-distance based. 

How distance based methods acquire knowledge from training instances may not be 

intuitive. For the purpose of training we use the same Homogeneous ECOC codeword matrix. 

We have created a sample 3-class predicted training instances with a pool of three classifiers 

to demonstrate the heterogeneous treatment of ECOC which in the case of our 3-class 

classification problem would be a three-by-three matrix (Figure 5). We would like to note 

that these class values were randomly generated to serve as a hypothetical sample and has no 

actual correlation with any data. 

We first train each c classifier on each b binary classification problem and then record 

the binary classification predicted by each classifier for each instance for each binary 



 

- 20 - 

 

classification problem (Figure 9). The classifiers will have varying levels of success in 

predicting the binary classifications. Our task at this stage is to decide on which of the three 

column/classifier to pick for each of the three binary classification problems ��, ��, ��. With 

� = 3 and � = 3, the search space will have �� = 3� = 27 possible combinations of these 

nine columns. Complication of Heterogeneous ECOC due to search space size will be 

discussed at a later section (Chapter 3.2). 

Composition 
Column 
distance 

Row 
distance 

Column × Row 
distance 

Accuracy 

ANN, ANN, ANN 30 410 12,300 35% 
NB, NB, NB 26 502 13,052 65% 

SVM, SVM, SVM 30 460 13,800 60% 

Figure 7: Heterogeneous classifier composition values 

While we will discuss how each unit of fitness acquires knowledge and briefly 

compare them, our experimental findings will be discussed at a later chapter (Chapter 4.2). 

Homogeneous compositions of classifiers from our sample have different accuracies (Figure 

7) and ideally Naïve Bayes would be preferred by homogeneous ECOC. Also in our sample 

column distance values range between 26 and 36, row distance values range between 328 and 

504, column × row distance values range between 11,152 and 16,128 and accuracy values 

range between 35% to 70%. 

Composition 
Column 
distance 

Row 
distance 

Column × Row 
distance 

Accuracy 

SVM, SVM, NB 36 414 14,904 60% 
NB, SVM, NB 32 504 16,128 65% 
NB, SVM, NB 32 504 16,128 65% 

NB, SVM, SVM 34 432 14,688 70% 

Figure 8: Classifier compositions with highest unit of fitness value (in bold) 

Column distance values are calculated by pairwise distance among the predicted 

training instance binary class columns of the selected composition. For our sample, the ideal 

composition for column distance as unit of fitness would be the composition SVM, SVM, NB 

with the highest column distance value of 36 with an accuracy of 60% (Figure 8). However 
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this value is trailed by column distance value of 34 which corresponds to five different 

classifier compositions with accuracies ranging from 40% to 70% and so on. 

Row distance values are calculated by pairwise distance among predicted training 

instance binary class rows belonging to each class and every other class of the selected 

composition. For our sample, the ideal composition for row distance as the unit of fitness 

would be NB, SVM, NB with the highest row distance value of 504 with an accuracy of 65% 

(Figure 8). However this value is trailed by column distance values of 502 with 65% accuracy, 

492 with 40% accuracy, 466 with 65% accuracy, 464 with 60% accuracy and so on. 

Column × Row distance values are calculated by the multiplication of the previously 

explained column distance value and row distance value. The motivation behind this unit of 

fitness was an attempt to maximize both column and row distance values. For our sample, the 

ideal composition for column × row distance as the unit of fitness would be NB, SVM, NB 

with the highest column × row distance value of 16,128 with an accuracy of 65% (Figure 8). 

However this value is trailed by column × row distance values of 15,744 with 40% accuracy, 

14,904 with 60% accuracy, 14,688 with 70% accuracy, 14,400 with 45% accuracy and so on. 

Accuracy values are calculated based on the accuracy of the predicted training 

instance binary class values when these are decoded back to multi-class values and compared 

to the actual class values where ECOC’s error recovery plays an important part. For our 

sample, the ideal composition for accuracy as the unit of fitness would be NB, SVM, SVM 

with the highest accuracy of 70%. This value is trailed by accuracy value of 65% which 

corresponds to four different classifier compositions. 

For our sample, increase in distance based units of fitness value did not always 

increase accuracy as even maximization of any of the said value did not correspond to the 
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optimal classifier composition. Hence at a glance a notable weakness of distance based units 

of fitness can be observed. We will discuss and compare the performance of these units of 

fitness in greater through experimental data in a later chapter (Chapter 4.2). 
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��� 1 1 0 1 1 1 0 1 0 

��� 1 0 1 0 1 1 1 0 0 

��� 0 0 0 1 1 1 0 0 1 

Figure 9: Sample of knowledge based on predicted training instances 

3.2 Search Approaches Used 

As discussed thus far, the core problem of our new treatment of ECOC is an 

optimization problem that needs to choose a binary classifier type for each of the binary 

classification problem. The search approach needs to find a classifier composition of length b 
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with c possible values each corresponding to b binary classifiers that are selected from a pool 

of c binary classifiers to solve b binary classification problems such that the validation 

accuracy a is maximized. The performance of each search approach will be discussed in the 

next chapter. 

3.2.1 ID Vector 

In order to simplify the programming but also express the optimization problem in a 

convenient median for search algorithms, we assign an ID to each of our pool of c binary 

classifiers in no particular order (See Figure 10). This assignment remains consistent in the 

entirety of the code’s execution. Using these IDs we represent the optimization problem of b 

binary classification problems as a string of b discrete values of c possible values which we 

will henceforth refer as an ID Vector.  

ID Binary classifier 
1 Artificial Neural Networks (ANN) 
2 Naïve Bayes 
3 Decision Tree 
4 Support Vector Machines (SVM) 
5 Logistic Regression 

Figure 10: IDs of binary classifiers 

3.2.2 Exhaustive Search 

Initially we used an exhaustive search approach to find the highest column distance 

based on the publication by  (Diettrich & Bakiri, 1995) where we have attempted to search 

for all combinations using a pool of only three classifiers (Decision Trees, SVM, Logistic 

Regression) on datasets with progressively higher number of classes. For this we created a 

matrix that arranged all instance combinations of the IDs of b binary problems with c 

classifiers. We observed that this approach quickly became impractical as it was taking far 

too much time and system resources just to create the said matrix which we would later 
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search for the optimal ID vector composition offering the optimal solution. This was not 

entirely surprising as the search space size of a k-class problem with c classifiers in the 

classifier pool is calculable through a double exponential function  2(���) − 1!
�
= �� which 

basically is the number of binary classification problems raised to the power of c (See Figure 

11). We as a result did not attempt this approach on other unit of fitness and instead only used 

a Genetic Algorithm. 

Multi-
class 

Binary 
Classification 

Problems  

Pool of two 
classifiers 

Pool of three 
classifiers 

Pool of four 
classifiers 

Pool of five 
classifiers 

3 3 9 27 81 243 
4 7 49 343 2,401 16,807 
5 15 225 3,375 50,625 759,375 
6 31 961 29,791 923,521 28,629,151 
7 63 3,969 250,047 15,752,961 992,436,543 
8 127 16,129 2,048,383 260,144,641 33,038,369,407 
9 255 65,025 16,581,375 4,228,250,625 1,078,203,909,375 

10 511 261,121 133,432,831 68,184,176,641 34,842,114,263,551 

Figure 11: Search space size for pools of classifiers 

3.2.3 Genetic Algorithm 

We decided to use genetic algorithms to process the search space to find classifier ID 

combinations that score highest on the four different unit of fitness we have previously 

defined. We ran the Genetic Algorithm for all four of the unit of fitness to compare and 

determine their usefulness. 

A Genetic Algorithm is a local search that resembles evolution by taking a population 

of competing genotypes or individuals which encode possible solutions – typically in an 

array/string of bits or discrete values. Individual elements of this encoding are typically called 

genes or chromosomes. The genetic algorithm combines members of the population based on 

a fitness function to produce genotypes more fit. Least fit genotypes are dropped from the 

population and are replaced by genotypes derived from more fit genotypes through mutation, 

crossover and selection operations. 
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A mutation operation alters one or more genes of a genotype  �� such that it introduces 

greater diversity also serving as a recovery measure from local optima convergence should 

the genetic algorithm get trapped in one. It is important to note that too frequent mutations 

will lead to near-random results. There are a number of mutation types suitable depending on 

the type of the genotype array such as bit string mutation, flip bit mutation, boundary 

mutation, Gaussian mutation, uniform mutation and non-uniform mutation methods. In bit 

string mutation method a single random bit is inverted. In flip bit mutation method all bits are 

inverted. In boundary mutation method the entire genotype is replaced randomly either with 

an upper or lower bound. In Gaussian mutation method a Gaussian distributed random value 

is added to a random gene within defined bounds. In uniform mutation method a chosen gene 

is replaced a random value within defined bounds. In non-uniform mutation method similar 

to uniform mutation method a chosen gene is replaced by a random value within defined 

bounds but the probability of a mutation decreases as generation count increases. 

A crossover operation mixes the encoded solution of two parent genotypes "� and  "� 

such that new child genotype is or genotypes are formed. Many techniques for this process 

exists such as one-point crossover, two-point crossover, cut and splice crossover, uniform 

crossover and half uniform crossover, three parent crossover methods. In one-point crossover 

method genotypes "� and  "� of l length are both split at point m such that two new children 

are created where the first child has the genotype of  "�#→% and "�(%&#)→'  combined and the 

second child has the genotype of  "�#→%  and "�(%&#)→' essentially swapping the genes of the 

two parents at point m. In two-point crossover method genotypes "� and  "� of l length are 

both split at point m and n such that two new children are created where the first child has the 

genotype of  "�#→%  and "�(%&#)→(  and "�((&#)→'  combined and the second child has the 
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genotype of "�#→%  and "�(%&#)→(  and  "�((&#)→'  essentially swapping only a segment of the 

genes of the two parents. In cut and splice method genotype "� of l length is split at point m 

and genotype "� of l length is split at point n where ) ≠ + such that two new children are 

created where the first child has the genotype of  "�#→%  and "�((&#)→'  combined and the 

second child has the genotype of  "�#→( and "�(%&#)→' essentially swapping segments of the 

genes of the two parents at different points forming gene lengths different from both parents. 

In both uniform and half uniform crossover method unlike prior methods genotypes "� and  

"�  of l length are allowed to exchange genes rather than segment(s) of genes. In uniform 

crossover method genes are swapped with a fixed ratio and probability such that the same 

number of from  "� and  "� are swapped maintaining length l. Unlike the uniform crossover 

method, in half uniform crossover method exactly half of the non-matching genes are 

swapped instead. In three parent crossover method genotypes "�,  "� and "� of length l are 

randomly chosen and the child is derived from the three parents such that for each gene of the 

three parents the most common occurring gene is used to construct the child gene of length l. 

A selection operation determines which genes are to survive for the later generations 

using the fitness function. Depending on the implementation the parent genotypes can be 

dropped entirely at the end of each generation with only a certain number of most fit children 

being allowed to create offspring. In elitist models however the genotypes with the highest 

fitness values of the previous generation is retained preventing the loss of the best found 

solution which the children may not necessarily outperform. There are a number of 

approaches in treating the fitness values from the fitness function such as: sorting, 

normalization, accumulation and thresholding. In sorting the fitness values are sorted without 

any sort of modification. In normalization each fitness value is divided by the sum of all 
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fitness values providing normalized fitness values. In accumulation a normalized fitness 

value of the fitness values of the current genotype and the fitness values from the parent 

genotypes from past generation(s) of the genotype. In thresholding only genotypes that have a 

fitness value above a certain threshold are retained. 

 
bestVector : best ID vector composition(s) 
type  : type of unit of fitness being searched 
generation : current generation of ID vectors 
hist  : history of previously tested ID vectors 
classifier : pool of classifiers 
genRem : number of generations remaining 
trainSet : training set 
testSet : test set 
enum {Col, Row, ColRow, Acc} 
Funciton bestVector = GeneticAlg(type, generation, hist, classifier, genRem, 
trainSet, testSet, numClass) 
ForEach i:generaiton 
  If (type == Acc) 
    Score(i)= ValAcc(generation(i) ,classifier, trainSet, testSet); 
  Else 
    Solutions=Learn(generation(i), classifier, trainSet); 
    If (type == Col) 
      Score(i) = ColDist(Solutions); 
    Else if (type == Row) 
      Score(i) = RowDist(Solutions); 
    Else if (type == ColRow) 
      Score(i) = ColDist(Solutions) * RowDist(Solutions); 
    EndIf 
  EndIf 
End ForEach 
generation = EliteSort(generation,Score); 
If (genRem > 0) 
  hist = UpdateHist(generation, hist); 
  end = length(generation); 
  generation(end) = Crossover(generation(1), generation(2), hist); 
  generation(end-1) = Crossover(generation(1), generation(3), hist); 
  For (j = 2; j < floor(end/2); j++) 
    generation(end-j) = Crossover(generation(j), generation(j+1), hist); 
  EndFor 
  bestVector = GeneticAlg(type, generation, hist, classifier, (genRem–1), 
trainSet, testSet, numClass); 
Else         
  BestIDs=MaxScoreIDs(Score); 
  ForEach k:BestIDs 
    bestVector(k) = generation(BestIDs(k)); 
  End ForEach 
EndIf 
EndFunciton 

 

Figure 12: Pseudocode of the Genetic Algorithm implementation 

In our implementation we use uniform crossover method and elitist sorting selection 

operations (Figure 12). We determine our genotype population size based on the number of 
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classes from the multi-class classification problem. Our Initial attempt determined the size of 

our population as , = 100 × 3(���) + 1 for 21 generations (See Figure 13). We attempted 

such a dynamic size for the population to circumvent known limitations of genetic algorithms 

such as the convergence on local optima (Horn & Goldberg, 1994). However it was quickly 

apparent that this was not feasible due to the time constraints. Hence we restricted our 

population to 59 genotypes for 3-class problems and 101 genotypes for higher class 

classification problems. We realize this is an insufficient amount (See Figure 14) especially 

for higher class classification problems where the portion of the search space investigated 

rapidly becomes insignificant but our goal is to demonstrate whether our optimization attempt 

yields better results not to find the optimal solution for each dataset. Mind that even with 

such a restricted population and only a single 10-fold run with 21 generations, the 8-class 

dataset ecoli had taken about 41 hours to process. 

Multi- 

class 

Binary 

Problems 

Search 

Space Size 

Initial 

Population 

Total 

Population 

Percent of 

Search Space 

3 3 243 101 1,101 453.0864197% 

4 7 16,807 301 3,301 19.64062593% 

5 15 759,375 901 9,901 1.303835391% 

6 31 28,629,151 2,701 29,701 0.103743908% 

7 63 992,436,543 8,101 89,101 0.008978005% 

8 127 33,038,369,407 24,301 267,301 0.000809062% 

Figure 13: Formulated genetic search size for a pool of five classifiers and 21 generations 

Multi- 

class 

Binary 

Problems 

Search 

Space Size 

Initial 

Population 

Total 

Population 

Percent of 

Search Space 

3 3 243 59 639 262.9629629% 

4 7 16,807 101 1,101 6.550841911% 

5 15 759,375 101 1,101 0.144987654% 

6 31 28,629,151 101 1,101 0.003845731% 

7 63 992,436,543 101 1,101 0.000110939% 

8 127 33,038,369,407 101 1,101 0.000003332% 

Figure 14: Restricted genetic search size for a pool of five classifiers and 21 generations 
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We populate our population matrix , × �  with the c homogeneous genotypes and 

then append , − � uniformly distributed pseudorandom integers (using MATLAB function 

randi) corresponding to the algorithm ID range.  The inclusion of the homogeneous 

genotypes allows the genetic algorithm to also consider Homogeneous ID vector 

compositions essentially insuring that the heterogeneous result will never underperform 

homogeneous results in terms of the unit of fitness considered. The entire initial population 

matrix is ranked through the fitness function and sorted. 

Our crossover function is a slightly modified version of the formal definition of the 

method such that it only produces one child instead of two. This is done primarily to save 

time as training task takes a considerable amount of time. Each crossover operation has 

genotypes "�  and "�  as input and "�  as output. All genotypes are of l length where 

/ = � = 2(���) − 1, the number of binary class classification problems. Crossover function 

determines a random value n where / 30 < + < / and then picks n many genes from  "� and 

then picks the remaining / − + genes from "� forming "�. Due to the random nature of the 

crossover operation we implemented a history of the genotype population that were attempted 

before to avoid repetitions which not only insures more genes are actually tested but also 

improves performance by avoiding redundant operations. Before returning "� as output, it is 

compared to the current and past population and if "� is already on it, the crossover operation 

thus-far between the two parents is repeated until either all combinations between the two 

parents are attempted or if a suitable child is found. 

3.3 k-fold Cross Validation and ID Vector Selection 

We observed a profound impact of the training instances on the selected ID vector 

such that it was imperative for us to overcome this overfitting problem. Furthermore some 
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datasets – particularly those with more symmetric instance distribution – even registered 

multiple ID vector solutions with the same value of unit of fitness requiring further 

refinement of our ID vector selection. 

In order to generalize our results and in order to overcome this overfitting problem we 

use k-fold Cross Validation which is a statistical model validation technique that randomly 

divides the sample of data into k equally sized subsamples. Each subsample is then retained 

for validation and the other k-1 samples are collectively used as the training set. This process 

is repeated for each subsample. 

In our implementation we use 10-fold cross validation by consistently applying the 

exhaustive search or the genetic algorithm search for each fold. Each iteration returns an ID 

vector or vectors that best performed as far as the unit of fitness is concerned. ID vector(s) 

from each iteration may or may not agree with each other. 

Initially we attempted frequency based approaches such as frequency distribution but 

this quickly became problematic when the number of possible candidate ID vectors made the 

usability of frequency based statistical approaches difficult. Instead we implemented a second 

10-fold cross validation to exhaustively process all of the ID vectors returned by the previous 

10-fold cross validation run. Among them we choose the ID vector(s) with the highest 

average validation accuracy for all of the iterations. 

It is possible for this second 10-fold cross validation to also return multiple ID vectors 

with identical validation accuracies. If so we intuitively choose the ID vector with the 

greatest variety to minimize the potential problems Homogeneous ECOC suffers as 

previously discussed. This also maximizes the diversity of the binary classifiers the IDs 

represent. 
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3.4 Conclusion 

We have thus far discussed the complications arisen due to the heterogeneous 

treatment of ECOC and our proposed solutions to said complications. In the next chapter we 

discuss our experiments to evaluate the validity of the Heterogeneous ECOC approach. We 

first discuss the properties of thirteen datasets we use for our experiments where we briefly 

explain each dataset. We then examine the performance of exhaustive search with column 

distance as the unit of fitness on the nine three and four class datasets. We do not run 

exhaustive search on other units of fitness or more datasets due to performance and time 

considerations. Afterwards we examine the performance of the genetic algorithm with all 

four units of fitness (column distance, row distance, column × row distance, validation 

accuracy). We discuss our findings by comparing the four unit of fitness first of the 

Heterogeneous ECOC approach first with each other and afterwards with Homogeneous 

ECOC serving as our benchmark. 
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4 Experimental results 

As discussed in the previous chapter, our main task is an optimization problem where 

we choose an ID vector of length b with each element having c possible values corresponding 

to the selection of c binary classifiers for b binary classification problems using a variety of 

datasets. We use 10-fold cross-validation to statistically verify our results as well as to select 

the aforementioned ID vector. 

We also use 10-fold cross-validation on homogeneous ECOC to calculate statistically 

relevant validation accuracy for each of the c classifiers as our benchmark and pick the 

homogeneous classifier distribution with the highest validation accuracy. We then compare 

this validation accuracy of Homogeneous ECOC with the validation accuracy of the classifier 

composition of the Heterogeneous ECOC approach depicted by the ID vector. 

4.1 Datasets Processed 

We have chosen thirteen different datasets with varying degree of complexity to test 

our approach (See Figure 15). We acquired all of our datasets from University of California, 

Irvine (UCI) Machine Learning Repository and credited the authors of the datasets in Figure 

40 (Appendix A – Sources of All Datasets). 

We preferred datasets without missing attribute values as some binary classifiers are 

unable to compensate for this. As a pre-processing step we moved the class column as the last 

column, we removed any statistically irrelevant columns (such as ID columns) and we 

shuffled the columns to have more uniform distribution of all classes for the cross validation 

process. 
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Dataset classification problem 

balance 3 4 625 Classify tipping of balance scale using weight and distance 

cmc 3 9 1,473 
Classify contraceptive method choice using demographic and socio-economic 
characteristics2 

iris 3 4 150 Classify the type of iris flower using sepal and petal characteristics 
thyroid 3 5 215 Classify otolaryngology patients using thyroid gland features 

vertebral 3 6 310 Classify orthopaedic patients using biomechanical features 
wine 3 13 178 Classify the origin of wines using chemical analysis  
car 4 6 1,728 Classify acceptability of cars using price and technical characteristics 

lymph 4 18 148 Classify lymph patients using lymphography features 
vehicle 4 18 846 Classify images of vehicles using features extracted from silhouettes 
derm 6 34 358 Classify patients of erythemato-squamous diseases using dermatology features 
glass 6 9 214 Classify glass types in crime scenes using chemical composition 
zoo 7 16 101 Classify animals in zoos using anatomic features 

ecoli 8 7 336 Classify E. coli bacteria using protein localization sites 

Figure 15: Statistics of the datasets used 

4.1.1 Balance Scale Dataset 

This artificially generated multivariate datasets (balance) with 625 instances models 

psychological experiment results using a balance scale. Each instance with four features has 

values of the two sides of the scale for mass 2� and 2� with values ranging between one and 

five and for distance 3 and � with values also ranging between one and five. The three class 

values represent if the scale is remaining balanced (49 instances), tipping to the right (288 

instances), or tipping to the left (288 instances). The dataset basically tries to determine the 

mechanical advantage formula 2�3 = 2��. 

4.1.2 Contraceptive Method Choice Dataset 

This multivariate dataset (cmc) with 1,473 instances is a subset of the 1987 National 

Indonesian Contraceptive Prevalence Survey which interviewed married women whom were 

either not pregnant or did not know if they were pregnant during the interview. Each instance 

                                                 

2 1987 National Indonesia Contraceptive Prevalence Survey 
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has nine demographic and socio-economic characteristics as the nine features: the age of the 

wife, education of the wife and husband each with a categorical value ranging between one 

and four, number of children, wife’s religion (if Islam or not), wife’s employment (if working 

or not), husbands occupation with a categorical value ranging between one and four, standard 

of living index with a categorical value ranging between one and four, media exposure (good 

or not good). The three class values represent the current contraceptive method choice which 

could either be none used (629 instances), long-term methods (333 instances), or short-term 

methods (511 instances). 

4.1.3 Iris Flower Dataset 

This multivariate dataset (iris) with 150 instances is the well-known database 

collected by Edgar Anderson and introduced by Sir Ronald Fisher as an example of 

discriminant analysis. Each instance has flower’s characteristics as the four features with 

numeric values in centimeters: sepal length, a sepal width, a petal length and a petal width. 

The three class values are the three species of iris flower Iris Setosa, Iris Versicolour and Iris 

Virginica – each with 50 instances. 

4.1.4 Thyroid Gland Dataset 

This multivariate dataset (thyroid) with 215 instances representing diagnosis of 

otolaryngology patients. Each instance has the five features with numerical values: T3-resin 

uptake test (percentage), total Serum thyroxin as measured by the isotopic displacement 

method, total serum triiodothyronine as measured by radioimmuno assay, basal thyroid-

stimulating hormone (TSH) as measured by radioimmuno assay, maximal absolute difference 

of TSH value after injection of 200 micro grams of thyrotropin-releasing hormone as 

compared to the basal value. The three class values represent the diagnosis of the thyroid 
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gland of otolaryngology patients which could either be normal (150 instances), hyper 

functioning (35 instances), hypo functioning (30 instances). 

4.1.5 Vertebral Column Dataset 

This multivariate dataset (vertebral) with 310 instances represent vertebral column 

(backbone) of orthopaedic patients. Each instance represents each patient’s biomechanical 

characteristics with numerical values as the six features: pelvic incidence, pelvic tilt, lumbar 

lordosis angle, sacral slope, pelvic radius, and degree spondylolisthesis. The three class 

values represent the diagnosis of the patients which could either be disk hernia (60 instances), 

spondylolisthesis (150 instances), or normal (100 instances).  

4.1.6 Wine Origin Dataset 

This multivariate dataset (wine) with 178 instances represent wines in the same 

geographic location in Italy. Each instance holds chemical composition as the thirteen 

features with numerical values: alcohol , malic acid, ash, alcalinity of ash, magnesium, total 

phenols, flavonoids, nonflavanoid phenols, proanthocyanins, color intensity, hue, 

OD280/OD315 of diluted wines, proline. The three class values represent the cultivars which 

could either be class 1 (59 instances), class 2 (71 instances) or class 3 (48 instances). The 

actual identity of the cultivars is not known. 

4.1.7 Car Evaluation Dataset 

This multivariate dataset (car) with 1,728 instances represent car evaluations. Each 

instance has as the six features: buying price, price of maintenance, number of doors with 

four possible categorical values each, person capacity, size of luggage boot, estimated safety 

with three possible categorical values each. The four class values represent desirability of 
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cars which could either be unacceptable (1,210 instances), acceptable (384 instances), good 

(69 instances), or very good (65 instances). 

4.1.8 Lymphography Dataset 

This multivariate dataset (lymph) with 148 instances representing diagnosis of lymph 

patients. Each instance has the 18 features: block of affere, bl. of lymph. c, bl. of lymph. s, by 

pass, extravasates, regeneration of, early uptake in, dislocation of, and exclusion of no each 

with binary values, changes in lym., and special forms with three categorical values, 

lymphatics, lym.nodes dimin and lym.nodes enlar, defect in node, and changes in node each 

with four categorical values, changes in stru, and no. of nodes each with eight categorical 

values. The four class values represent the diagnosis which could either be normal find (2 

instances), metastases (81 instances), malign lymph (61 instances), or fibrosis (4 instances). 

4.1.9 Vehicle Silhouettes Dataset 

This multivariate dataset (vehicle) with 846 instances representing features of vehicle 

silhouettes. Each instance has the 18 features: compactness, circularity, distance circularity, 

radius ratio, pr.axis aspect ratio, maximum length aspect ratio, scatter ratio, elongatedness, 

pr.axis rectangularity, maximum length rectangularity, scaled variance, along major axis, 

scaled variance along minor axis, scaled radius of gyration, skewness about major axis, 

skewness about minor axis, kurtosis about minor axis, kurtosis about major axis, hollows 

ratio. The four class values represent the vehicle types which could either be opel (212 

instances), saab (217 instances), bus (218 instances), or van (199 instances). 
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4.1.10 Dermatology Dataset 

This multivariate dataset (derm) with 358 instances represent erythemato-squamous 

diseases. Each instance has the 34 features: family history with a binary value, erythema, 

scaling, definite borders, itching, koebner phenomenon, polygonal papules, follicular papules, 

oral mucosal involvement, knee and elbow involvement, scalp involvement, melanin 

incontinence, eosinophils in the infiltrate, PNL infiltrate, fibrosis of the papillary dermis, 

exocytosis, acanthosis, hyperkeratosis, parakeratosis, clubbing of the rete ridges, elongation 

of the rete ridges, thinning of the suprapapillary epidermis, spongiform pustule, munro 

microabcess, focal hypergranulosis, disappearance of the granular layer, vacuolisation and 

damage of basal layer, spongiosis, saw-tooth appearance of retes, follicular horn plug, 

perifollicular parakeratosis, inflammatory monoluclear infiltrate, band-like infiltrate each 

with four categorical values, age with a numeric value. The six class values represent the 

diagnosis which could either be psoriasis (112 instances), seboreic dermatitis (61 instances), 

lichen planus (72 instances), pityriasis rosea (49 instances), cronic dermatitis (52 instances), 

pityriasis rubra pilaris (20 instances).  

4.1.11 Crime Scene Glass Identification Dataset 

This multivariate dataset (glass) with 214 instances represent forensic glass evidence 

in crime scenes. Each instance has the nine features with numerical values: refractive index, 

sodium, magnesium, aluminum, silicon, potassium, calcium, barium, iron. The six class 

values represent the glass types which could be building windows float processed (70 

instances), building windows non float processed (76 instances), vehicle windows float 

processed (17 instances), vehicle windows non float processed (0 instances/not in this 

dataset), containers (13 instances), tableware (9 instances), headlamps (29 instances). The 
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study that prompted this dataset was prompted by criminological investigation procedures 

requiring glass to be identified on the crime scene to be processed as evidence. 

4.1.12 Zoo Dataset 

This artificial multivariate dataset (zoo) with 101 instances represent animals. Each 

instance has the sixteen features: hair, feathers, eggs, milk, airborne, aquatic, predator, 

toothed, backbone, breathes, venomous, fins, tail, domestic, catsize each with binary values, 

legs with six categorical values. The seven class values represent the seven groups of animals 

which can ben class 1 (41 instances), class 2 (20 instances), class 3 (5 instances), class 4 (13 

instances), class 5 (4 instances), class 6 (8 instances), class 7 (10 instances). 

4.1.13 Escherichia Coli Protein Localization Sites Dataset 

This multivariate dataset (ecoli) with 336 instances represent protein localization of 

Escherichia coli (e. coli) bacteria. Each instance has the seven feature: lip (Von Heijne's 

Signal Peptidase II consensus sequence score), and chg (Presence of charge on N-terminus of 

predicted lipoproteins) each with binary values, mcg (McGeoch's method for signal sequence 

recognition), gvh (Von Heijne's method for signal sequence recognition), aac (score of 

discriminant analysis of the amino acid content of outer membrane and periplasmic proteins), 

alm1 (score of the ALOM membrane spanning region prediction program), and alm2 (score 

of ALOM program after excluding putative cleavable signal regions from the sequence) each 

with numeric values. The eight class values represent cytoplasm (143 instances), inner 

membrane without signal sequence (77 classes), periplasm (52 instances), inner membrane 

with uncleavable signal sequence (35 instances), outer membrane (20 instances), outer 

membrane lipoprotein (5 instances), inner membrane lipoprotein (2 classes), or inner 

membrane with cleavable signal sequence (2 instances). 
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4.2 Analysis of Experiments 

We attempted solving the optimization problem using different units of fitness in an 

attempt to find which fitness approach provides the ID vector with the highest validation 

accuracy. As discussed in chapter 3.1, we use Hamming to calculate distances between class 

predictions based on training set instances. 

4.2.1 Exhaustive Search for Column Distance 

We decided to use column distance (Chapter 3.1.1) as our first unit of fitness as 

discussed in chapter 3.2.2. For performance reasons as well as due to the double exponential 

search space size, we did not apply this exhaustive approach for other competing units of 

fitness (See Figure 11). Furthermore, we only performed this exhaustive search on three and 

four class classification problems which comprised of nine datasets total. We calculated 

validation accuracy values ranging between 50.33% and 96.76% with an average of 73.21% 

(See Figure 16). For higher than four-class datasets, we exclusively use the genetic algorithm. 

 
Figure 16: Accuracies for exhaustive search of column distances 
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4.2.2 Column Distance as GA Fitness Function 

We also use column distance (Chapter 3.1.1), the same unit of fitness, as the genetic 

algorithm fitness function such that the fitness value corresponded to the column distance and 

the genetic algorithm attempts to maximize this column distance as discussed in chapter 3.2.3. 

We perform this genetic search for all of the datasets – including the ones solved by an 

exhaustive search. As it may be observed, we are indeed repeating our column distance based 

search for the three and four class datasets. We do so in an attempt to observe if our genetic 

algorithm’s overall performance is comparable to exhaustive results. We will discuss such 

comparisons in chapter 4.3. 

We observed an increase in average validation accuracy with this approach on some 

datasets such as the lymph dataset (See Figure 19). However, this was not always the case 

with most datasets as visible with car and vehicle datasets (See Figure 18 and Figure 20). On 

all datasets we even observed fluctuations in validation accuracy for individual iterations of 

the 10-fold cross validation as the genetic algorithms generations progressed where the 

column distance consistently increased. We calculated validation accuracy values ranging 

between 45.38% and 96.76% with an average of 76.57% (See Figure 17). 

 
Figure 17: Accuracies for column distance as GA fitness function 
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Figure 18: Column distance as fitness function for car dataset 
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Figure 19: Column distance as fitness function for lymph dataset 
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Figure 20: Column distance as fitness function for vehicle dataset 
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4.2.3 Row Distance as GA Fitness Function 

As our second unit of fitness, we use row distance (Chapter 3.1.2) as the genetic 

algorithm fitness function such that the fitness value corresponded to the row distance and the 

genetic algorithm attempts to maximize this row distance as discussed in chapter 3.2.3. We 

perform this genetic search for all of the datasets. 

We observed an increase in average validation accuracy with this approach on some 

datasets such as the vehicle dataset (See Figure 24). However, this was not always the case 

with most datasets as visible with car and lymph datasets (See Figure 22 and Figure 23). On 

all datasets we even observed fluctuations in validation accuracy for individual iterations of 

the 10-fold cross validation as the genetic algorithms generations progressed where the row 

distance consistently increased. We calculated validation accuracy values ranging between 

38.17% and 98.95% with an average of 83.18% (See Figure 21). 

 
Figure 21: Accuracies for row distance as GA fitness function 
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Figure 22: Row distance as fitness function for car dataset 
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Figure 23: Row distance as fitness function for lymph dataset 

34,000

36,500

39,000

41,500

44,000

46,500

49,000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

ro
w

 d
is

ta
n

ce

generations/iterations

1/10 fold 2/10 fold 3/10 fold 4/10 fold

5/10 fold 6/10 fold 7/10 fold 8/10 fold

9/10 fold 10/10 fold Average

10%

20%

30%

40%

50%

60%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

v
a

li
d

a
ti

o
n

 a
cc

u
ra

cy

generations/iterations

1/10 fold 2/10 fold 3/10 fold 4/10 fold

5/10 fold 6/10 fold 7/10 fold 8/10 fold

9/10 fold 10/10 fold Average



 

- 47 - 

 

 
Figure 24: Row distance as fitness function for vehicle dataset 
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4.2.4 Column × Row Distance as GA Fitness Function 

As our third unit of fitness, we use a multiplication of column and row distance or 

column × row distance (Chapter 3.1.3) as the genetic algorithm fitness function such that the 

fitness value corresponded to the multiplication of the two distance values and the genetic 

algorithm attempts to maximize this multiplication value as discussed in chapter 3.2.3. We 

perform this genetic search for all of the datasets. 

We observed an increase in average validation accuracy with this approach on some 

datasets such as the vehicle dataset (See Figure 28). However, this was not always the case 

with most datasets as visible with car and lymph datasets (See Figure 26 and Figure 27). We 

even observed fluctuations in validation accuracy for individual iterations of the 10-fold cross 

validation as the genetic algorithms generations progressed where the multiplied value of the 

column and row distance consistently increased. We calculated validation accuracy values 

ranging between 36.62% and 98.95% with an average of 80.67% (See Figure 25). 

 
Figure 25: Accuracies for Column × row distance as GA fitness function 
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Figure 26: Column × row distance as fitness function for car dataset 
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Figure 27: Column × row distance as fitness function for lymph dataset 
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Figure 28: Column × row distance as fitness function for vehicle dataset 
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4.2.5 Validation Accuracy as GA Fitness Function 

As our fourth unit of fitness, we use validation accuracy (Chapter 3.1.4) as the genetic 

algorithm fitness function such that the fitness value corresponded to the validation accuracy 

and the genetic algorithm attempts to maximize this multiplication value as discussed in 

chapter 3.2.3. We perform this genetic search for all of the datasets. 

We observed an increase in average validation accuracy with this approach on all 

datasets except the three class balance dataset which remained retained its initial value. We 

also observed an increase in column distance on some datasets such as the car dataset (See 

Figure 30). However this was not the case with most datasets as visible with lymph and 

vehicle datasets (See Figure 31 and Figure 32). We however observed fluctuations in column 

distance for individual iterations of the 10-fold cross validation as the genetic algorithms 

generations progressed where the validation accuracy consistently increased. We calculated 

validation accuracy values ranging between 52.91% and 98.95% with an average of 86.91% 

(See Figure 29). 

 
Figure 29: Accuracies for validation accuracy as GA fitness function 
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Figure 30: Accuracy as fitness function for car dataset 
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Figure 31: Accuracy as fitness function for lymph dataset 
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Figure 32: Accuracy as fitness function for vehicle dataset 
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4.3 Discussion 

We first used Homogeneous ECOC (Chapter 2.2.3) on the thirteen datasets (Chapter 

4.1) to serve as a benchmark. We used the same c classifiers in our classifier pool (Chapter 

2.1) one by one for all b binary classification problems homogeneously. We used 10-fold 

cross validation for overfitting avoidance, statistical relevance and to calculate the mean for 

all iterations of each classifier. Of the c classifiers, the classifier with highest validation 

accuracy is picked as the Homogeneous ECOC composition for each dataset. No single 

classifier outperformed every other classifier and instead a variety of classifiers were 

preferred (See Figure 33 and Figure 41). Classifier averages are as follows: ANN 34.46%, 

Naïve Bayes 76.70%, Decision Trees 80.84%, SVM 75.26%, and Logistic Regression 

77.90%. The average of the best performing Homogeneous ECOC classifier compositions is 

83.89% (Figure 34 and Figure 44). 

 
Figure 33: Homogeneous ECOC classifier preferences
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Figure 34: Homogeneous ECOC validation accuracies
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Afterwards on the same thirteen datasets as before we applied the Heterogeneous 

ECOC approach (Chapter 3). With this approach the optimization problem is to find an ID 

vector of length b with each element having c possible values. We experimented with four 

different units of fitness to distinguish ID vectors: column distance, row distance, column × 

row distance, and validation accuracy (Chapter 4.2). We used 10-fold cross-validation to 

verify the statistical relevance of these experiments. We used an exhaustive search with 

column distance as our unit of fitness on nine datasets and calculated 73.21% as the 

validation accuracy however, the size of the search space made it impractical to use this 

approach on higher class problems (Chapter 4.2.1).  We then used a genetic algorithm using 

all of the four units of fitness. The four runs revealed and interesting feature of our approach. 

We noticed that column distance and column × row distance based units of fitness 

predominantly preferred hording one classifier type rather than a more balanced distribution 

of classifiers as the other two unit of fitness (Figure 35 and Figure 42). The average 

validation accuracy based on each of the units of fitness is as follows: column distance 

76.57%, row distance 83.18%, column × row distance 80.67%, and validation accuracy 

86.91% (See Figure 36 and Figure 45). 

 

Figure 35: Heterogeneous ECOC classifier preferences
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Figure 36: Heterogeneous ECOC validation accuracies 
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We compare the validation accuracies from Homogeneous ECOC serving as a 

benchmark with the Heterogeneous ECOC approach validation accuracies for all of the 

datasets. From the exhaustive search with column distance as the unit if fitness, we calculated 

an average loss of 7.04% for the first nine datasets from the equivalent Homogeneous ECOC 

validation accuracy values. From the genetic algorithm search with column distance as the 

unit if fitness, we calculated an average loss of 7.58% for the first nine datasets and average 

loss of 7.32% for all datasets from Homogeneous ECOC validation accuracy values, 

performing the worst. From the genetic algorithm search with column × row distance as the 

unit of fitness, we calculated an average loss of 3.22% from Homogeneous ECOC validation 

accuracy values, performing somewhere between the two methods that either use column 

distance or row distance as the unit of fitness. From the genetic algorithm search with row 

distance as the unit if fitness, we calculated an average loss of 0.71% from Homogeneous 

ECOC validation accuracy values, performing the best among distance based units of fitness. 

From the genetic algorithm with validation accuracy as unit of fitness, we calculated an 

average gain of 3.01% from Homogeneous ECOC validation accuracy values, performing the 

best among all units of fitness (Figure 37 and Figure 46). 

Among the two search approaches using column distances as the unit of fitness for the 

first nine datasets, exhaustive search (73.21%) performed slightly better than genetic 

algorithm search (72.67%) because it was able to find better (higher) column distance 

because in some datasets it converged to a local optima, a known limitation of the genetic 

algorithm  (Horn & Goldberg, 1994). This difference of 0.54% however was not significant 

enough for us to prefer exhaustive search to experiment on other units of fitness. 
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Figure 37: Validation accuracy gain or loss of Heterogeneous over Homogeneous ECOC  
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One of the most interesting results were with the balance dataset where we observed 

our approaches with distance as the unit of fitness with heterogeneously distributed ID 

vectors performing worse than validation accuracy based unit of fitness which had an 

unforeseen homogenous composition. If we review the balance dataset (Chapter 4.1.1), this 

actually is not a very extraordinary result as each feature of this 3-class artificial dataset is 

calculable using the other three features which makes each four feature of each 625 instance 

have parallel relationships with their class label. Column or row distance relationships would 

undermine the pre-existing relationships in this dataset and its simple nature would prevent 

error recovery. While this is a special case, it demonstrates a key weakness of the distance 

based unit of fitness. This also suggests that homogenous compositions can outperform 

heterogeneous compositions in such very specific cases. Hence units of fitness methods for 

Heterogeneous ECOC should not skip such homogeneous compositions during search for the 

optimal ID vector. 

 

Figure 38: Heterogeneous ECOC classifier preference percentages 
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4.4 Conclusion 

We have compared the performance of the four units of fitness of the Heterogeneous 

ECOC approach through the use of the genetic algorithm search. All three distance based 

units of fitness (column distance, row distance, column × row distance) provided inconsistent 

and unsatisfactory results in terms of validation accuracy. While our distance based units of 

fitness Heterogeneous ECOC approaches have performed on par or slightly better than the 

Homogeneous ECOC results on some datasets, they had underperformed on others. On the 

other hand Heterogeneous ECOC approach with validation accuracy as the unit of fitness 

performed either the same or better than Homogeneous ECOC’s validation accuracies. We 

also observed that validation accuracy is not necessarily directly proportional to column 

and/or row distance as in some cases column and/or row distance values have actually 

decreased as validation accuracy has instead. 

We discuss our observations and conclusions from these experiments in greater detail 

in the next chapter. We also discuss possible future research possibilities such as 

experimenting with Heterogeneous ECOC in different ECOC settings, improving our genetic 

algorithm so that it better avoids local optima convergence, experimenting on more domains, 

particularly larger ones with real-world applications. 
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5 Conclusion 

Thus far we have discussed the beneficial properties of converting multi-class 

classification problems to multiple binary class classification problems where we have given 

great emphasis to the approach Error-Correcting Output Codes (ECOC). 

In its exhaustive setting ECOC converts a k-class multi-class classification problem to 

� = 2(���) − 1 binary classification problems and relies on a predetermined codeword matrix 

where each row refers to a class and each column refers to the binary classification problem. 

Ideally these columns and rows should have high column and row separation in terms of 

Hamming distance to have better error recovery during the decoding phase and also to avoid 

overfitting the training data. ECOC solves these binary classification problems using a binary 

classifier of the same type in a homogeneous manner (Chapter 2.2.3). 

With this work we investigated the effects of relaxing this property of ECOC so that 

the binary classification problems can be solved in a heterogeneous manner. While this 

modification may appear intuitively sound, it does introduce a number of complications. For 

instance this new approach creates an optimization problem where the algorithm now needs 

to decide on a classifier composition to solve the individual binary classification problems for 

which the algorithm needs to have the ability to distinguish classifiers from each other. 

However, properties of ECOC such as the codeword matrix column and row separation 

Hamming distance are insufficient to make such a distinction. We discuss how we have 

addressed these complications with the Heterogeneous ECOC approach (Chapter 3) in the 

next section. 
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5.1 Heterogeneous ECOC 

The Heterogeneous ECOC approach naturally treats the task as an optimization 

problem where it searches for a classifier composition of b binary classifiers combination 

from a pool of c classifiers that has the optimal performance to solve each of the b binary 

classification problems. 

We expressed this task in the form of an ID vector of length b where each element 

corresponds to a classifier ID (See Figure 10) corresponding to a classifier that solves one of 

the binary classification problems. This notation allowed us to search for combinations of 

classifiers. In order to avoid overfitting the training data and in order to verify the statistical 

relevance of our results we used 10-fold cross validation (Chapter 3.3) on all of our search 

approaches. Each fold returned one or more ID vectors. We then run a second 10-fold cross 

validation to decide on which one of the ID vector has the optimal performance again in a 

statistically relevant manner. 

Before testing our approach we gathered Homogenous ECOC values as a benchmark 

by testing each distribution from the same pool of c classifiers where for each dataset we only 

use the composition with the highest validation accuracy. We first approached our 

optimization problem with an exhaustive search using column distance as our unit of fitness 

(Chapter 3.2.2), however the impracticalities of this approach became apparent fairly quickly 

as the search space is double exponential. We then experimented with genetic algorithm 

search (Chapter 3.2.3) using the same unit of fitness to observed the performance of this local 

search algorithm. After having a comparable result with our initial exhaustive approach, we 

relied on genetic algorithm search to investigate the four different units of fitness (Chapter 

3.1) for the fitness function. 
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5.2 Findings and Results 

We use the performance of aforementioned Homogeneous ECOC in terms of 

validation accuracy at which we observed that no single homogenous classifier outperforms 

every other (See Figure 33 and Figure 41). We then compared these performances with the 

performance of the Heterogeneous ECOC approach. We tested our approach with four units 

of fitness that utilize knowledge from the training instances: column distance, row distance, 

column × row distance, and validation accuracy (Chapter 3.1). 

While we have used genetic algorithm as our search algorithm, any type of search 

should facilitate for the same task. Our results show that Heterogeneous ECOC approaches 

that use distance based units of fitness underperforms even behind Homogeneous ECOC 

values. On the other hand our validation accuracy based Heterogeneous ECOC approach 

performed better than Homogeneous ECOC values (Figure 39). We investigated the reason 

behind this seemingly counter-intuitive finding. 

ECOC’s focus on maximizing the two properties column separation and row 

separation is intended to minimize correlated errors and to also minimize complements of 

columns which also cause correlation of errors. Homogeneous ECOC is designed in a manner 

to exploit this classification by consensus approach however; it can only recover from errors 

if and only if the errors themselves have relatively low correlation across codewords 

(Diettrich & Bakiri, 1995). With the Heterogeneous ECOC approach we attempt to reduce 

the possibility of correlation of errors as the binary classification problems are solved by 

diverse group of classifiers. It is important to note however that deciding on a robust unit of 

fitness is vital for our approach as a poorly selected classifier composition will make 

correlated errors. 



 

- 67 - 

 

Our findings strongly suggest that the relationship between validation accuracy and 

column and/or row distance is not straightforward (Kuncheva, 2005) as we observed 

fluctuations in validation accuracy even when the column and/or row distance consistently 

increases on some datasets. Likewise a consistent increase in validation accuracy can also 

result in fluctuations in column and/or row distance. Hence for the purpose of searching for 

an optimal classifier composition, we consider distance based units of fitness not adequately 

robust enough as a metric. Furthermore diversity of the Heterogeneous ECOC approach also 

allows the possibility of ID vector compositions that have very correlated errors which may 

also have column and/or row distances – even higher than that of the optimal classifier 

composition to the binary classification problems, particularly if one or more binary 

classifiers from the pool of classifiers have a very poor and correlated performance. Hence 

we conclude that the relationship between validation accuracy and column distance or with 

row distance is weakly correlated if not completely uncorrelated. 

We would also like to note that the main intention of our study was to observe the 

effects of and complications from relaxing the homogeneous property of ECOC’s classifier 

composition rather than to find the optimal classifier compositions for the individual datasets. 

Hence, in the interest of time constraints we did not run comprehensive searches that seek an 

optimal convergence. However there is no reason for validation accuracy to decrease through 

a longer search algorithm run with validation accuracy as the unit of fitness. We would in fact 

expect a longer search to provide more optimal solutions to the optimization problem. 

However, we cannot with certainty expect the same for distance based unit of fitness. 
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Figure 39: Validation accuracy averages of ECOC approaches 
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specific classifier. We suspect this is due to high correlation of errors by these classifiers 

which happen to also have high distance values. We were also surprised by the uniform 

distribution of the classifier preference of our validation accuracy based method as we 

intuitively expected this approach to predominantly prefer the classifier with the best 

performance (Figure 38 and Figure 43). 

5.3 Future Research 

For future research we have a number of proposals we will focus on in order to have 

more practical results but also to circumvent problems stemming from ECOC itself and from 

the genetic algorithm. 

We want our approach to be usable on higher class classification problems, increasing 

the number of real-world applications. A serious setback for our approach currently is the 

double exponential growth of the search space (Chapter 3.2.2) because we rely on exhaustive 

ECOC as the foundation of our approach. We will investigate the performance of our 

approach with different ECOC approaches such as the ones proposed by (Mayoraz & Moreira, 

1997), (Allwein, Schapire, & Singer, 2001), (Windeatt & Ghaderi, 2003), (Escalera, 2009), 

and (Smirnov, Moed, Nalbantov, & Sprinkhuizen-Kuyper, 2011). 

Our current implementation of genetic algorithm search suffers from a number of 

problems that has an impact on the overall performance of the search. One such problem is 

local optima convergence, a known limitation of genetic algorithms  (Horn & Goldberg, 

1994), which we suspect we can further limit the impact of by implementing in mutation 

operations. We will also investigate other possible improvements to reduce the effects of this 

problem. We want to also have a better method to detect convergence such that the genetic 
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algorithm search would be terminated in the event of such a convergence allowing larger 

number of generations if they are needed.  

Lastly, all the datasets we used in this work were fairly small with their number of 

instances ranging between 101 and 1,728 (Chapter 4.1). While this many instances are 

sufficient for the purpose of this research, it is not sufficient for real-world usage as the 

validation error is fairly high for most datasets (Chapter 4.3) which would greatly limit the 

real world applications of our approach in these domains. One of these domains we will 

investigate applications of our approach is classification of edits on Wikipedia. 
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Appendix A – Sources of All Datasets 

Name Sources of Datasets 

balance 
• Generated to model psychological experiments reported by Siegler, R. S. (1976) 
• Three Aspects of Cognitive Development. Cognitive Psychology, 8, 481-520 

car • Marko Bohanec, Jožef Stefan Institute, Ljubljana, Slovenia 
cmc • Subset of the 1987 National Indonesia Contraceptive Prevalence Survey by Tjen-Sien Lim 

derm 
• Nilsel Ilter, M.D., Ph.D., Gazi University, School of Medicine, Ankara, Turkey 
• H. Altay Guvenir, PhD., Bilkent University, Department of Computer Engineering and Information Science, Ankara, Turkey 

ecoli • Kenta Nakai, Institue of Molecular and Cellular Biology, Osaka University, Osaka, Japan 
glass • B. German, Central Research Establishment, Home Office Forensic Science Service, Aldermaston, United Kingdom 
iris • Database collected by Edgar Anderson and introduced by Sir Ronald Fisher 

lymph 
• This lymphography domain was obtained from the University Medical Centre, Institute of Oncology, Yugoslavia.  Thanks go to M. Zwitter and M. 

Soklic for providing the data. 
thyroid • Danny Coomans, Dept. of Maths. and Stats., James Cook University, Townsville, Australia 
vehicle • Drs.Pete Mowforth and Barry Shepherd, Turing Institute, Glasgow, United Kingdom  

vertebral 
• Guilherme de Alencar Barreto & Ajalmar Rêgo da Rocha Neto, Department of Teleinformatics Engineering, Federal University of Ceará, Ceará, Brazil. 
• Henrique Antonio Fonseca da Mota Filho, Hospital Monte Klinikum, Fortaleza, Ceará, Brazil. 

wine 
• Forina, M. et al, PARVUS - An Extendible Package for Data Exploration, Classification and Correlation, Institute of Pharmaceutical and Food Analysis 

and Technologies, Via Brigata Salerno, Genoa, Italy. 
zoo • Richard S. Forsyth, School of Psychology, University of Nottingham, United Kingdom 

Figure 40: Attribution of the sources of the datasets used 
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Appendix B – Classifier Preferences of ECOC Approaches 
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Figure 41: Classifier preference of Homogeneous ECOC 

 

Classifier Preference 

of Units of Fitness 
ANN 

Naïve 
Bayes 

Decision 
Trees 

SVM 
Logistic 

Regression 
All 

Validation Accuracy (GA) 67 62 61 51 50 291 
Row Distance (GA) 61 61 66 56 47 291 

Column × Row Distance (GA) 65 43 81 65 37 291 
Column Distance (GA) 128 61 45 35 22 291 

Column Distance (Exhaustive) 12 14 2 8 3 39 
Total 333 241 253 213 163 1203 

Figure 42: Classifier preferences of Heterogeneous ECOC 

 

Classifier Preference 

of Units of Fitness 
ANN 

Naïve 
Bayes 

Decision 
Trees 

SVM 
Logistic 

Regression 

Validation Accuracy (GA) 23.02% 21.31% 20.27% 16.84% 18.56% 
Row Distance (GA) 20.96% 20.96% 22.68% 19.24% 16.15% 

Column × Row Distance (GA) 22.34% 14.78% 27.84% 22.34% 12.71% 
Column Distance (GA) 43.99% 20.96% 15.46% 12.03% 07.56% 

Column Distance (Exhaustive) 30.77% 35.90% 05.13% 20.51% 07.69% 
Total 27.68% 20.03% 21.03% 17.71% 13.55% 

Figure 43: Classifier preference percentages of heterogeneous ECOC 
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Appendix C – Summary of Results of All Datasets 

Classifier balance cmc iris thyroid vertebral wine car lymph vehicle derm glass zoo ecoli Average 

Artificial Neural Networks 7.53% 42.72% 33.33% 70.05% 19.35% 32.24% 70.09% 6.76% 25.18% 31.43% 34.75% 34.12% 40.39% 34.46% 
Naïve Bayes 92.98% 43.19% 94.67% 94.08% 70.32% 96.58% 78.84% 45.71% 56.44% 92.58% 87.43% 69.52% 74.80% 76.70% 

Decision Trees 73.29% 48.10% 94.00% 93.04% 78.71% 88.16% 96.61% 43.57% 69.91% 95.20% 98.42% 89.21% 82.75% 80.84% 
Support Vector Machines 51.50% 47.95% 74.67% 91.70% 80.97% 95.96% 79.52% 43.29% 63.01% 97.36% 82.31% 89.83% 80.29% 75.26% 

Logistic Regression 91.68% 46.21% 70.67% 90.75% 83.55% 94.71% 79.72% 45.76% 64.66% 97.36% 77.19% 89.83% 80.59% 77.90% 

Best Homogenous ECOC 92.98% 48.10% 94.67% 94.08% 83.55% 96.58% 96.61% 45.76% 69.91% 97.36% 98.42% 89.83% 82.75% 83.89% 

Figure 44: Validation accuracies of Homogeneous ECOC 

 

Unit of Fitness balance cmc iris thyroid Vertebral wine car lymph vehicle derm glass zoo ecoli Average 

Column Distance (Exhaustive) 89.30% 51.68% 66.67% 96.76% 73.87% 94.38% 77.85% 50.33% 58.03% - - - - 73.21%3 
Column Distance (GA) 89.30% 51.68% 66.67% 96.76% 75.81% 92.87% 77.55% 45.38% 58.03% 80.96% 87.43% 89.83% 83.14% 76.57% 

Row Distance (GA) 91.68% 51.32% 96.67% 97.62% 71.29% 96.88% 89.03% 38.17% 76.38% 97.56% 98.95% 90.83% 85.00% 83.18% 
Column × Row Distance (GA) 84.06% 51.32% 96.67% 97.62% 71.29% 94.08% 76.90% 36.62% 66.89% 98.25% 98.95% 90.83% 85.29% 80.67% 

Validation Accuracy (GA) 92.98% 52.91% 96.97% 98.10% 84.84% 97.50% 96.78% 55.29% 80.26% 98.35% 98.95% 91.55% 85.59% 86.91% 

Figure 45: Validation accuracies of Heterogeneous ECOC 

 

Unit of Fitness balance cmc iris thyroid vertebral wine car lymph vehicle derm glass zoo ecoli Average 

Column Distance (Exhaustive) -3.68% 3.58% -28.00% 2.68% -9.68% -2.20% -18.76% 4.57% -11.88% - - - - -7.04%3 
Column Distance (GA) -3.68% 3.58% -28.00% 2.68% -7.74% -3.71% -19.06% -0.38% -11.88% -16.40% -10.99% 0.00% 0.39% -7.32% 

Row Distance (GA) -1.30% 3.22% 2.00% 3.54% -12.26% 0.30% -7.58% -7.59% 6.47% 0.20% 0.53% 1.00% 2.25% -0.71% 
Column × Row Distance (GA) -8.92% 3.22% 2.00% 3.54% -12.26% -2.50% -19.71% -9.14% -3.02% 0.89% 0.53% 1.00% 2.54% -3.22% 

Validation Accuracy (GA) 0.00% 4.81% 2.00% 4.02% 1.29% 0.92% 0.17% 9.53% 10.35% 0.99% 0.53% 1.72% 2.84% 3.01% 

Figure 46: Validation accuracy gain or loss of Heterogeneous over Homogeneous ECOC 

                                                 

3 Only the average of the first nine datasets. 


